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Abstract

The solution of gravity-driven free surface flows typically resorts to the Shallow Water Equations, SWE. In turn, the

derivation of the SWE incorporates a number of assumptions and within them, it should be stressed that of quasi-

horizontal fluid velocities. However, when the flow occurs onto a steep and curved topography, the velocities are

parallel to the bed rather than horizontal and curvature effects may affect the fluid flow. This paper extends the SWE

incorporating the inclined and curved bed effects thus, allowing the analysis of gravity flows on actual topographies.

Due to the similarity between the generalized and the standard SWE, the numerical methods available for the solution

of the SWE can be easily applied for the solution of the generalized equations. Within these methods, this paper uses the

Taylor–Galerkin algorithm. The results obtained in the numerical test cases indicate that incorporating the slope and

curvature effects in the model is relevant for granular flows and of reduced effect in the remaining cases.

� 2003 Elsevier Science B.V. All rights reserved.
1. Introduction

The classical approach to solve gravity-driven free surface flows such as flood waves, mudflows, debris

flows, etc. is based on the assumption that the fluid depth is smaller than a representative dimension of the

extension of the fluid spill. This assumption allows the complex Navier–Stokes 3-D problem, involving in

addition the calculation of the evolution of the surface separating the fluid from the air, to be collapsed in

the vertical direction and solved them as a 2-D problem: the shallow water problem. Although methods are

available to solve a Navier–Stokes problem involving two fluids with a high density ratio, such as those

presented in [8,10], the 2-D approach saves significant computational effort and allows performing calcu-
lations involving realistic domains. Besides, numerical methods to solve the Shallow Water Equations

abound, see for instance [1,2,12,18].
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The derivation of the Shallow Water Equations, SWE, starts from the assumption of reduced fluid

depth. The derivation uses a Cartesian coordinate system where the vertical direction is oriented in the

direction of the gravity. Thus, the gravity is considered approximately perpendicular to the free surface and

to the bed. Therefore, bed slopes should be small and the velocities quasi-horizontal.

These requirements are fulfilled when the gravity current runs onto quasi-horizontal areas. However,

when it runs onto steep slopes and curved beds, the fluid velocities are parallel to the bed rather than

horizontal. In some cases, this issue can be mitigated by considering the XY plane parallel to the average

slope. Unfortunately, this approach is not feasible when the spill of fluid runs onto slopes with opposite
sign: a run-up flow.

In addition to this slope effect, the bed curvature incorporates into the momentum conservation

equations a centrifugal force, proportional to the curvature times the velocity squared, which it is not

considered in the SWE.

This issue is solved by some authors by directly incorporating the centrifugal forces into the momentum

conservation equation as external forces in the global fX ; Y g reference system, see for instance [4,5].

Savage and Hutter have derived [15,17] a 1-D system of equations incorporating the slope and curvature

effects. In this 1-D case, the issue of the reference system is greatly simplified as the principal curvature
directions are fixed and known a priori.

Recently, Gray et al. [7] extended the Savage and Hutter formulation to complex geometries. In this

approach, the actual basal topography is modelled by defining a mean topography allowing a simple or-

thogonal curvilinear reference system and, then, superposing a shallow basal topography on it. This mean

reference surface is not unique and various choices are possible. Besides, the superposed topography must

be shallow respective to the specified reference surface.

This paper presents the derivation of 2-D depth integrated equations using a curvilinear system of

reference which incorporates the effects of the bed slope and curvature thus, avoiding the aforementioned
issues, and applicable to a generic topography. Considering a curvilinear reference system corresponding to

the principal curvature directions in each point of the basal surface, the resulting equations are greatly

simplified and formally equivalent to the SWE. Therefore, the Taylor–Galerkin scheme already used by the

authors [9] to solve dam break problems including drying–wetting areas within the FEM context is used to

solve the generalized system of equations. Finally, the performance of the proposed Generalized Shallow

Water Equations is shown by comparison against the corresponding SWE results calculated considering

different fluid rheologies.
2. Mathematical model

The flow of a gravity-driven free surface flow is typically described using depth integrated equations.

These equations are obtained from the Navier–Stokes equations particularized for an incompressible fluid

q
o �UU
ot

þ qdiv �UU~ �UU
� �

¼ divs � gradp þ q�bb; ð1Þ
div �UU ¼ 0; ð2Þ

where

• q is the fluid density,

• �UU is the 3-D velocity vector,

• s is the viscous stress tensor,

• p is the pressure, and �bb is the vector of body forces: Coriolis and gravity.



Fig. 1. Shallow Water Equations notation.

Fig. 2. Curvilinear reference system used to describe the basal surface.
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Considering a Cartesian reference system, see Fig. 1 for a 2-D presentation, where X3 is oriented in the

vertical direction, coincident with the gravity force, and assuming quasi-horizontal velocities, the inte-

gration of the Navier–Stokes equations along the depth results in the Shallow Water Equations, SWE, see

texts books such as [1,3] for the details of the derivation.

However, in the case of shallow flows on steep slopes, the flow velocities are parallel to the bed rather
than horizontal, as considered in the SWE, and the slope changes, i.e., the curvature effects need to be

incorporated into the governing equations. In this case, a curvilinear coordinate system is necessary to

describe the flow.

Fig. 2 presents the curvilinear reference system fa; bg proposed to describe the basal surface. To simplify

the expressions of the differential operators in this reference system, the a and b coordinate lines correspond

to the principal curvature directions of the bed surface in each point. Thus, the corresponding natural

vectors f�tta;�ttbg are orthogonal. This reference system changes respective to a Cartesian system fXig along

the basal surface.



Fig. 3. Coordinate system used along the fluid depth. Cut along the a coordinate line.
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A third coordinate, g, see Fig. 3, is used to describe the spatial position in the normal direction to the bed

surface. Considering that the flow depth is small compared to the length and width of the fluid spill and

smaller than the minimum radius of curvature, a point located within the fluid can be described as, see
Fig. 3,

�xx ¼ �xxP ða; bÞ þ g�nn; ð3Þ

which particularizes to a point Q at the free surface as

�xxQ ¼ �xxP ða; bÞ þ h�nn:

Using this geometrical description, the governing equations are obtained by

1. writing the Navier–Stokes and the normal velocity at the free surface equations in the curvilinear co-

ordinate system described in Figs. 2 and 3;

2. deriving dimensionless equations to resolve the higher order terms;

3. depth integration of the dimensionless equation, neglecting the higher order terms;

4. recovering dimensions to get the final governing equations.
The following sections describes each step in this sequence.

2.1. Navier–Stokes equations in the curvilinear coordinates system

Eq. (1) assumes that the total stress tensor, r, comprises a viscous component, s; which is a function of

rate of deformation tensor, D; plus an isotropic component, )p1, existing at the fluid at rest [11]

r ¼ �p1þ s: ð4Þ

For generality, the following derivation does not considered any stress decomposition. The specialization to

different types of fluid is done at the end of the derivation.

Continuity equation. The continuity equation (2) is written in terms of the velocity components, ui, and

curvilinear coordinates, ni; as

1

j�hhij
oui

oni
þ uj o�eej

oni
	 �hhi ¼ 0; i; j ¼ 1; 2; 3;
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where

• �hhi ¼ o�xx=oni,
• �hhi 	 �hhj ¼ dij,
• �eej ¼

�hhj
j�hhjj.

Considering now Eq. (3) to obtain the natural vectors, �hhi, the continuity equation may be written as

1
�

� vbg
� ou
oa

þ 1ð � vagÞ
ov
ob

þ o

og
1ð
�

� vagÞ 1
�

� vbg
�
w
�
¼ 0; ð5Þ

where

• fu; v;wg are the components of the velocity in the fa; b; gg reference system and,

• va; vb are the curvatures in the a and b directions, respectively.

Momentum equations. Considering that the only body force, �bb, is the gravity

�bb ¼ �g�kk;

where �kk is the unit vector in the X3 direction, i.e., neglecting the Coriolis forces, the three components of the

momentum equation are

• Component a

q
o

ot
1ð
��

� vagÞ 1
�

� vbg
�
u
�
þ 1
�

� vbg
� ou2

oa
þ o

og
1ð
�

� vagÞ 1
�

� vbg
�
uw
�

� va 1
�

� vbg
�
uwþ 1ð � vagÞ

oðuvÞ
ob

�

¼ ð1 � vbgÞ
ora

oa
þ ð1 � vagÞ

orab

ob
þ ð1 � vbgÞ

oð1 � vagÞrag

og

� 1
��

� vbg
�
va þ 1ð � vagÞvb

�
rag � 1ð � vagÞ 1

�
� vbg

�
qg�kk 	 �tta: ð6Þ

• Component b

q
o

ot
1ð
��

� vagÞ 1
�

� vbg
�
v
�
þ 1
�

� vbg
� oðuvÞ

oa
þ o

og
1ð
�

� vagÞ 1
�

� vbg
�
vw
�

� vb 1
�

� vbg
�
vwþ 1ð � vagÞ

oðv2Þ
ob

�

¼ 1
�

� vbg
� orab

oa
þ ð1 � vagÞ

orb

ob
þ o

og
1ð
�

� vagÞ 1
�

� vbg
�
rbg
�

� 1
��

� vbg
�
va þ 1ð � vagÞvb

�
rbg � 1ð � vagÞ 1

�
� vbg

�
qg�kk 	 �ttb: ð7Þ

• Component g

q
o

ot
1ð
��

� vagÞ 1
�

� vbg
�
w
�
þ va 1

�
� vbg

�
u2 þ vb 1ð � vagÞv2 þ 1

�
� vbg

� oðuwÞ
oa

þ 1ð � vagÞ
oðvwÞ
ob

þ
o 1 � vagð Þ 1 � vbg

� �
w2

� �
og

�

¼ 1
�

� vbg
� orag

oa
þ 1ð � vagÞ

orbg

ob
þ 1ð � vagÞ 1

�
� vbg

� org

og
� 1
��

� vbg
�
va þ 1ð � vagÞvb

�
rg

þ 1
�

� vbg
�
var

a þ 1ð � vagÞvbr
b � 1ð � vagÞ 1

�
� vbg

�
qg�kk 	 �nn: ð8Þ
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Free surface velocity. The velocity component normal to the free surface, ws, is calculated from the material

derivative of the depth, h, versus time as

ws ¼ Dh
Dt

¼ oh
ot

þ gradh 	 �uus;

which results in the following expression:

ws ¼ oh
ot

þ 1

1 � vah
oh
oa
us þ 1

1 � vbh
oh
ob
vs: ð9Þ
2.2. Dimensionless equations

Considering now a length L characterizing the water spill in the a direction, a widthW in the b direction

and a characteristic depth H the following relationships between dimensioned and dimensionless variables

can be defined as

u ¼
ffiffiffiffiffiffi
gL

p
ûu; a ¼ Lâa; va ¼

ka

L
v̂va;

v ¼ W
L

ffiffiffiffiffiffi
gL

p
v̂v; b ¼ W b̂b; vb ¼ kb

L
v̂vb;

w ¼ H
L

ffiffiffiffiffiffi
gL

p
ŵw; g ¼ H ĝg; r ¼ qgH r̂r;

t ¼
ffiffiffi
L
g

s
t̂t; e ¼ H

L
; d ¼ W

L
;

ð10Þ

where the ratio between a characteristic depth and length of the spill, e ¼ H=L, is assumed to be small,

i.e.,

e ¼ H
L

 1: ð11Þ

This condition indicates that the depth of the gravity current is much smaller than the horizontal dimen-
sions. Note that using different weighting in the a; b and g directions will result in simpler dimensionless

equations with the higher order terms being a function of e alone.

Writing Eqs. (5)–(9) in the dimensionless variables reveals the order e, or superior, components and

considering (11), these higher order terms will be neglected. However, as spatial derivatives of the stress

tensor components can be large, the terms of the form eðor=onÞare kept.

The resulting equations, where for simplicity the^symbol used to identify the dimensionless variables in

the previous table is dropped, are:

Continuity

1
�

� vbkbge
� ou
oa

þ 1ð � vakageÞ ov
ob

þ o

og
1ð
�

� vakageÞ 1
�

� vbkbge
�
w
�
¼ 0: ð12Þ
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Momentum

• Component a

o

ot
1ð
�

� vakageÞ 1
�

� vbkbge
�
u
�
þ 1
�

� vbkbge
� ou2

oa
þ o

og
1ð
�

� vakageÞ 1
�

� vbkbge
�
uw
�

� vaka 1
�

� vbkbge
�
uwþ 1ð � vakageÞ oðuvÞ

ob

¼ 1
�

� vbkbge
�
e
ora

oa
þ 1ð � vakageÞ e

d
orab

ob
þ 1
�

� vbkbge
� o 1 � vakageð Þrag

og

� 1ð � vakageÞ 1
�

� vbkbge
�
�kk 	 �tta: ð13Þ

• Component b

d
o

ot
1ð
��

� vakageÞ 1
�

� vbkbge
�
v
�
þ 1
�

� vbkbge
� oðuvÞ

oa
þ o

og
1ð
�

� vakageÞ 1
�

� vbkbge
�
vw
�

� vbkb 1
�

� vbg
�
evwþ 1ð � vakageÞ oðv

2Þ
ob

�

¼ 1
�

� vbkbge
�
e
orab

oa
þ 1ð � vakageÞ e

d
orb

ob
þ o

og
1ð
�

� vakageÞ 1
�

� vbkbge
�
rbg
�

� 1ð � vakageÞ 1
�

� vbkbge
�
�kk 	 �ttb: ð14Þ

• Component g

vaka 1
�

� vbkbge
�
u2 þ vbkb 1ð � vakageÞd2v2 ¼ 1ð � vakageÞ 1

�
� vbkbge

� org

og

� 1ð � vakageÞ 1
�

� vbkbge
�
�kk 	 �nn: ð15Þ

Free surface velocity

ws ¼ oh
ot

þ us

1 � vakaeh
oh
oa

þ vs

1 � vbkbeh
oh
ob

: ð16Þ
2.3. Depth integration

Now, Eqs. (12)–(15) are integrated along the coordinate g from the bed, g ¼ 0; to the free surface, g ¼ h:
As it is a standard procedure when obtaining depth integrating equations, the Leibniz�s rule is used.

Continuity equation. Integrating (12) from g ¼ 0 to g ¼ h and considering the kinematic condition (16) yields

oð�uuhÞ
oa

þ oð�vvhÞ
ob

þ oh
ot

¼ 0 þ OðeÞ;

where

• �uu ¼ 1
h

R h
0
u dg,

• �vv ¼ 1
h

R h
0
v dg.

Momentum equations. Integrating along the depth and neglecting terms of order OðeÞ and higher, the

components of the momentum equations may be written as
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• a Momentum

oð�uuhÞ
ot

þ oð�uu2hÞ
oa

þ oð�uu�vvhÞ
ob

¼ e
Z h

0

ora

oa
dg þ e

d

Z h

0

orab

ob
dg þ rab;S � rab;B � �kk 	 �ttah: ð17Þ

• b Momentum

d
oð�vvhÞ
ot

"
þ oð�uu�vvhÞ

oa
þ oð�vv2hÞ

ob

#
¼ e
Z h

0

orab

oa
dg þ e

d

Z h

0

orb

ob
dg þ rbg;S � rbg;B � �kk 	 �ttbh: ð18Þ

• g Momentum

vaka�uu2ðh� gÞ þ vbkbd
2�vv2ðh� gÞ ¼ rgðhÞ � rgðgÞ � hð � gÞ�kk 	 �nn:

The distribution of rg along the depth is derived from this latter equation as

rg gð Þ ¼ rg;S � vaka�uu2
h

þ vbkbd
2�vv2 þ �kk 	 �nn

i
hð � gÞ ð19Þ

In these equations, the superscripts S and B indicate that the concerned variable is calculated at the free

surface, S, or at the bed, B.

2.4. General depth integrated equations on an inclined and curved bed

Considering now the relationship between the dimensioned and dimensionless variables (10) the final
equations in the dimensioned variables are:

Continuity

oð�uuhÞ
oa

þ oð�vvhÞ
ob

þ oh
ot

¼ 0: ð20Þ

Momentum

• a Momentum

q
oð�uuhÞ
ot

"
þ oð�uu2hÞ

oa
þ oð�uu�vvhÞ

ob

#
¼
Z h

0

ora

oa
dg þ

Z h

0

orab

ob
dg þ rab;S � rab;B � qgh�kk 	 �tta:

• b Momentum

q
oð�vvhÞ
ot

"
þ oð�uu�vvhÞ

oa
þ oð�vv2hÞ

ob

#
¼
Z h

0

orab

oa
dg þ

Z h

0

orb

ob
dg þ rbg;S � rbg;B � qgh�kk 	 �ttb:

• g Momentum

rg gð Þ ¼ rg;S � q va�uu
2

h
þ vb�vv

2 þ g�kk 	 �nn
i
hð � gÞ: ð21Þ

Applying the Leibniz�s rule to the integrals of the derivatives of the stress tensor components results in the

following alternative form of the a and b components of the momentum equations:
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• a Momentum

q
oð�uuhÞ
ot

"
þ oð�uu2hÞ

oa
þ oð�uu�vvhÞ

ob

#
¼ oð�rrahÞ

oa
þ oð�rrabhÞ

ob
þ f a;S

R þ f a;B
R � qgh�kk 	 �tta: ð22Þ

• b Momentum

q
oð�vvhÞ
ot

"
þ oð�uu�vvhÞ

oa
þ oð�vv2hÞ

ob

#
¼ oð�rrabhÞ

oa
þ oð�rrbhÞ

ob
þ f b;S

R þ f b;B
R � qgh�kk 	 �ttb; ð23Þ

where

• �rrij ¼ 1
h

R h
0

rij dg
and the a and b components of the forces applied at the free surface, �ff S

R , and at the bed, �ff B
R , are obtained by

applying the stress tensor to the normal to each surface

�nnS ¼
�
� oh
oa

;� oh
ob

; 1

�
;

�nnB ¼ 0; 0;½ � 1�:
2.5. Fluid rheology

Considering a continuum sediment-fluid flow, Pierson and Costa [13] proposed a classification system of

the gravity-driven flows based on the ranges of sediment concentration. In this system, the different types of

flow are distinguished based on ranges of the sediment load and the rheological behavior.

A flow in which the sediment load is so low that it does not affect the flow behavior, or imparts no yield

strength to the flow, is considered as normal streamflow. This may be the case of dam break problems

where the fluid of concern is water and Newtonian rheology assumed for the fluid. As it is customary in
shallow water problems, the viscous dissipation is neglected compared to the bed friction dissipation.

At the other side of the classification, granular flow occurs at high ranges of sediment concentration,

where the mass loses its ability to liquefy, and frictional and collisional particle interactions dominate the

flow behavior. The calculations performed by Savage and Hutter [17] on a series of experiments using a dry,

granular, material indicate that the avalanche characteristics were fairly insensitivity to the material internal

friction angle but more sensitive to the bed friction.

Therefore, for practical purposes the constitutive equation (4) for both type of flows may be reduced to

r ¼ �p1

and extended to intermediate flows from the point of view of the sediment load, the hyperconcentrated and

debris flows, which are typically described using Bingham or Herschel–Bulkley rheologies.

Therefore,

�p gð Þ ¼ rg gð Þ ¼ ra gð Þ ¼ rb gð Þ:

The distribution along the depth of the stress tensor is now calculated using Eq. (21). Considering, just for

convenience, that the tractions at the free surface are zero, the depth averaged values is

�pp ¼ �ppS þ �ppB

2
¼ q va�uu

2
h

þ vb�vv
2 þ g�kk 	 �nn

i h
2
¼ �rra ¼ �rrb:
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It should be realized that the hydrostatic pressure distribution resulting in the case of the SWE incorporates

now a centrifugal force term, proportional to vu2.

Incorporating the value of the averaged normal stress components in (22) and (23) results in the final set

of differential equations describing the flow of an spill of fluid on an inclined and curved bed

oh
ot

þ oð�uuhÞ
oa

þ oð�vvhÞ
ob

¼ 0; ð24Þ
oð�uuhÞ
ot

þ oð�uu2hÞ
oa

þ oð�uu�vvhÞ
ob

¼ � 1

2

oðĝgh2Þ
oa

þ 1

q
f a;B
R � gh�kk 	 �tta; ð25Þ
oð�vvhÞ
ot

þ oð�uu�vvhÞ
oa

þ oð�vv2hÞ
ob

¼ � 1

2

oðĝgh2Þ
ob

þ 1

q
f b;B
R � gh�kk 	 �ttb; ð26Þ

where

ĝg ¼ va�uu
2 þ vb�vv

2 þ g�kk 	 �nn: ð27Þ

These equation can be written in compact form as

o

ot

h
�uuh
�vvh

2
4

3
5 ¼ o

oa

�uuh
�uu2hþ 1

2
ĝgh2

�uu�vvh

2
4

3
5þ o

ob

�vvh
�uu�vvh

�vv2hþ 1
2
ĝgh2

2
4

3
5 ¼

0
1
q f

B
R;a � gh�kk 	 �tta

1
q f

B
R;b � gh�kk 	 �ttb

2
64

3
75 ð28Þ

and thus they can be cast in the conservation laws framework

o/

ot
þ oFa

oa
þ oFb

ob
¼ S: ð29Þ

As regards the bed resistance force, �ff B
R , there are a number of available descriptions, see for instance [4]

for a compilation. The examples documented latter in this paper will consider the Chezy–Manning
equation

�ff B
R ¼ � qgn2j�uuj�uu

h
1
3

ð30Þ

for Newtonian fluids and Coulomb friction for granular flows

�ff B
R ¼ �pB tan d

�uu

j�uuj ; ð31Þ

where d is the bed friction angle.

2.6. Comparison with the shallow water equations

Using the notation described in Fig. 1, the SWE are

o

ot

h
�uuh
�vvh

2
4

3
5þ o

ox

�uuh
�uu2hþ 1

2
gh2

�uu�vvh

2
4

3
5þ o

oy

�vvh
�uu�vvh

�vv2hþ 1
2
gh2

2
4

3
5 ¼

0
1
q f

B
R;x � gh oZ

ox
1
q f

B
R;y � gh oZ

oy

2
4

3
5: ð32Þ
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The parallelism between (28) and (32) is evident once oZ=ox is recognized as �tta 	 �nn and the centrifugal forces,

proportional to vu2; are incorporated into the body forces. However, it should be realized that this par-

allelism only exits when the curvilinear reference system used in the generalized description corresponds to

the principal curvature directions.
3. Numerical model

There are a number of methods available to solve advection dominated problems as the one governed

by Eq. (28). Within the FEM context, due to its accuracy and simplicity, the Two-step Taylor–Galerkin

algorithm developed by Peraire [12] has been previously used by the authors to solve the SWE [9].

Considering the similarities pointed out in the previous section between the SWE equations (32) and

their generalization for an inclined and curved bed, (28), the Two-step Taylor–Galerkin will be used to

solve (28).
3.1. Two-step Taylor–Galerkin algorithm

The Two-step Taylor–Galerkin algorithm is widely used to solve advection dominated problems. Thus,

references describing this algorithm and its numerical implementation abound. The interested reader is

referred to [12,19] and references there in. For completeness, only an overview of the algorithm is included
in the present paper.

The Taylor–Galerkin procedure for solving Eq. (29) starts from a second order expansion in time

/nþ1 ¼ /n þ Dt
o/

ot

����
n

þ 1

2
Dt2

o2/

ot2

����
n

; ð33Þ

where the first order time derivative of the unknowns can be calculated using Eq. (29)

o/

ot

����
n

¼ Sð � divF Þn:

To obtain the second order time derivative, the Two-step Taylor–Galerkin procedure considers an inter-

mediate step between tn and tnþ1. The aim of this first time step is to calculate the solution at a time tnþ1=2.

This step is followed by a second one that brings the solution to tnþ1.

In this way, the first step results in

/nþ1=2 ¼ /n þ Dt
2

Sð � divF Þn ð34Þ

which allows the calculation of Fnþ1=2 and Snþ1=2.

Considering now a Taylor series expansion of the flux and source terms:

Fnþ1=2 ¼ Fn þ oF

ot

� �n Dt
2
;

Snþ1=2 ¼ Sn þ oS

ot

� �n Dt
2



56 M. Quecedo, M. Pastor / Journal of Computational Physics 189 (2003) 45–62
and the values of Fnþ1=2 and Snþ1=2, the flux and sources time derivatives are calculated as

oF

ot

� �n
¼ 2

Dt
Fnþ1=2
�

� Fn
�
;

oS

ot

� �n
¼ 2

Dt
Snþ1=2
�

� Sn
�
:

Incorporating these expressions into the second order time derivative

o2/

ot2

����
n

¼ o

ot
Sð � divF Þn

results in

o2/

ot2

����
n

¼ 2

Dt
Snþ1=2
�

� Sn � div Fnþ1=2
�

� Fn
��
:

Now replacing the expressions for the first and second order time derivatives in the Taylor series expansion
(33) allows the determination of the unknowns at time tnþ1

/nþ1 ¼ /n þ Dt Snþ1=2
�

� divFnþ1=2
�
:

This equation is spatially discretized using conventional Galerkin weighting to finally result in the system of

equations to be solved to obtain the unknown increments in the variables at the time step:

MD/ ¼ Dt
Z

NSnþ1=2 dX

�
�
Z

CN

N Fnþ1=2 	 �nn
� �

dc þ
Z

Fnþ1=2gradN dX

�
: ð35Þ
3.2. Algorithmic aspects

Due to the similarities between the generalized system of equations, (28), and the regular SWE, only

small changes are necessary to adapt a code capable to solve the SWE for solving (28).

These changes consist in obtaining the curvilinear reference system and principal curvatures and to
incorporate the appropriate stability requirements.

3.2.1. Calculation of the curvilinear reference system

The solution of the system of equations (28) requires the calculation of the curvilinear reference system
and the curvatures in each point of the mesh. This can be done using standard equations from differential

geometry of surfaces, see for instance [6]. However, they require the calculation of the second order spatial

derivatives of the bed elevation, X3.

This goal is achieved by calculating the first derivatives of the unknowns in the elements using the deriv-

atives of the shape functions and from them, calculating the first derivatives in nodes using standard recovery

techniques. From the first derivatives in nodes, second derivatives in elements are calculated in turn using the

shape function derivatives and, using again nodal recovery techniques, the second derivatives in nodes.

There are a number of nodal recovery techniques available, see for instance [19]. As the examples
presented in this paper use the three nodes triangles, the nodal averaging technique has been followedZ

NTN dX

� �
�xx ¼

Z
NTx dX; ð36Þ
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where

• N are the shape functions,

• �xx is the vector of nodal unknowns, first and second order derivatives, to be recovered and

• x is the value of the corresponding variable in each element in the mesh.

The right-hand side is evaluated by averaging the values calculated for the elements sharing the concerned

node. Then, the system of equations can be solved iteratively using the lumped mass matrix, ML, as the

approximate inverse matrix of the consistent mass matrix, MC, which is obtained by integrating the left-

hand side of (36)

�xxnþ1 ¼ �xxn þM�1
L RHS
�

�MC�xxn
�
:

For the calculation of the second derivatives of the bed elevation, using the lumped mass matrix, i.e., no
iteration has been shown to be sufficient.

3.2.2. Drying and wetting areas

There are a number of possibilities to handle the issue of wetting and drying areas. The simple procedure

to consider a null value for the variables corresponding to dry nodes in most cases is sufficient [9,14].

However, more accurate solutions as the proposed by Peraire [12] or that based on the level set technique

from Sethian [16] can be used either for the SWE equations or for the generalized equations in the cur-

vilinear reference system. No attempt has been pursued in the examples presented in this paper to use these

more complex procedures and the former procedure, assigning null variables to dry nodes, has been used.

3.2.3. Time steps limitations

A linear advection problem with a source is represented by

o/
ot

þ A o/
ox

¼ G/;

where A and G are constants.

For stability reasons, the numerical solution of this problem requires fulfillment of a condition on the

Courant number, C,

C ¼ ADx
Dt

6 a

and on the source number, Sr,

C
Sr

¼ GDt6 a1;

where

• Sr ¼ A
GDx,

• a ¼ 1 when using the lumped matrix and a ¼ 1=
ffiffiffi
3

p
when using the consistent mass matrix,

• a1 ¼ 2 according to [12].
These conditions are applied to the SWE by diagonalization of the corresponding 1-D form of the equa-

tions, namely

o

ot

2cþ u
2c� u

" #
þ

uþ c 0

0 u� c

" #
o

ox

2cþ u
2c� u

" #
¼ 1

h

�fR;x þ gh oH
ox

fR;x � gh oH
ox

" #
;
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where

c ¼
ffiffiffiffiffi
gh

p
resulting

Dt6 min
aDx

juj þ c ;
a1h

jfR;x�ghoZoxj
2c�u

0
@

1
A:

The extension of these conditions to the 1-D generalized shallow water equations, (28),

o

ot
h
uh

� �
þ 0 1

�u2 þ ĝgh 2u

� �
o

oa
h
uh

� �
¼ 1

h
0

1
q fR;a � gh�kk 	 �tta

� �
;

where ĝg is given by Eq. (27), is straightforward as this system of equations can be written in terms of the

Riemann�s invariants as

o

ot
2ĉcþ u
2ĉc� u

� �
þ uþ ĉc 0

0 u� ĉc

� �
o

ox
2ĉcþ u
2ĉc� u

� �
¼ 1

h

� 1
q fR;a þ gh�kk 	 �tta

1
q fR;a � gh�kk 	 �tta

" #
:

Therefore, the time step should meet the following condition:

Dt6 min
aDx

juj þ ĉc ;
a1h

j1qfR;a�gh�kk	�ttaj
2ĉc�u

0
@

1
A;

where ĉc ¼
ffiffiffiffiffi
ĝgh

p
:

4. Numerical test cases

The test cases presented next check the effect of the bed slope and curvature on the main characteristics,

i.e., depth and velocity, of a gravity-driven fluid flow. For this purpose, the test cases simulate the flow of

fluids of different type onto a constant slope, 30%, chute connected to an horizontal runout surface by a
circular arc section of 19 m radius, see Fig. 4. The fluid density is 2000 kg=m3 and it is initially at rest. The

flow is initiated by simulating an instantaneous removal of a retaining vertical wall 15 m height.
Fig. 4. Numerical test cases: (a) problem lay-out; (b) FEM mesh.
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Fig. 4 also presents the mesh used in the spatial discretization. The mesh comprises 2081 nodes grouped

in 3758 triangular elements; a finer mesh is used at the curved zone. Open boundary conditions are specified

for all the problem boundaries.

The flow depth and velocity calculated by the proposed equations and the SWE are monitored at three

control sections located as indicated in this figure.

4.1. Newtonian fluid

The first test case considers a Newtonian fluid. Therefore, according to Section 2.5, the bed friction is

calculated using the Chezy–Manning equation, (30), considering the Manning resistance coefficient of many

typical applications, 0.01.

As expected, the evolution of the flow depth calculated at the control section A, located at the chute
before the curved section, is practically indistinguishable of whether or not the curvature effects are in-

corporated in the problem formulation. However, the same observation is made at control section C, lo-

cated at the runout surface beyond the curved section. Finally, as regards control section B located in the

curved section, a reduced effect is observed in the depth evolution, see Fig. 5: the evolution is quite similar

with a difference in the peak value of just 0.2 m.
Fig. 5. Evolution of the flow depth at control section B. Newtonian fluid.
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4.2. Granular flow

The second test case involves a granular flow. Thus, according to Section 2.5, the bed resistance force is

calculated using Coulomb friction, Eq. (31). This test case considers a bed friction angle of 10�, slightly

lower than the bed slope angle of 16�.
As regards the evolution of the flow depth at control section A, the results are, as expected, independent

of the problem formulation and at control section B the differences remain reduced as for the Newtonian

fluid case.

However, there is a significant difference in the flow depth calculated at point C, located at the runout

surface. In effect, either the peak value and the evolution are different, as depicted in Fig. 6. Besides, the
stoppage distance of the rear of the pile is 206 m when considering the effect of curvature and 212.5 m when

ignored. Finally, there is another effect on the pile dimensions: the length of the pile is 4.5 m longer when

the curvature effects are ignored and its height is consequently decreased.

At control section B the evolution of the flow velocity calculated by both formulations is equivalent

although slightly lower velocities, by 1 m/s, are calculated when the curvature effects are incorporated in the

problem formulation. At control section C, as expected from the depth history, the evolution of the flow

velocities is quite different, see Fig. 7.

These effects are attributed to the enhanced bed friction in the arc section motivated by the curvature
effect, a centrifugal force, that raises the normal stress at the bed and, thus, the energy loses due to the

enhanced Coulomb type friction.
Fig. 6. Evolution of the flow depth at control section C. Granular flow.
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5. Conclusions

The derivation of Shallow Water Equations considers a reference system where gravity is approximately

perpendicular to the free surface and to the bed. In this way, the fluid velocities should be quasi-horizontal.

This assumption places restrictions to the application of SWE to the analysis of gravity-driven fluid flow

problems in steep slopes or topographies including changes in the slopes, that had not been previously

quantified.

To overcome these restrictions, the gravity-driven flow of a general fluid has been described in this paper
using depth integrated equations which incorporates steep slopes and curvature effects. Although the

derivation is somewhat lengthy, the resulting equations are simple when using the principal curvature di-

rections in each point as the curvilinear reference system. The generalized equations are applicable for any

slope and the only assumption made is that the fluid flow depth is small compared to typical dimensions of

the fluid spill and to the radius of curvature.

Due to the similarities between these Generalized Shallow Water Equations and the Shallow Water

Equations, the numerical methods used to solve the latter are directly applicable to the solution of the

GSWE. The application basically requires the calculation of the curvilinear reference system and curvatures
in each node and element of the mesh. This calculation is done before the time integration of the equations.

The results of the numerical test cases indicate that the SWE provides with solutions that are quite closed

to the results using the generalized formulation here proposed when the bed friction law does not depend on

the normal stress at the bed. Therefore, in this case there is no need to incorporate the centrifugal forces due

to curvature into the momentum conservation equations. In the case the bed friction depends on the normal
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stress, the centrifugal forces due to curvature increases the normal stress at the bed and the corresponding

energy dissipation by friction significantly affects the fluid flow characteristics.
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